死亡是一座永恒的灯塔

0%

洗牌算法具体指的是什么?

洗牌算法是我们常见的随机问题,在玩游戏、随机排序时经常会碰到,本质是让一个数组内的元素随机排列,即数组乱序。

Fisher–Yates Shuffle

关于数组乱序,正确的解法应该是 Fisher–Yates Shuffle,复杂度 O(n)。

其实它的思想非常的简单,遍历数组元素,将其与之前的任意元素交换。因为遍历有从前向后和从后往前两种方式,所以该算法大致也有两个版本的实现。

从后往前的版本:

1
2
3
4
5
6
7
8
9
10
11
12
function shuffle(array) {
var _array = array.concat();

for (var i = _array.length; i--; ) {
var j = Math.floor(Math.random() * (i + 1));
var temp = _array[i];
_array[i] = _array[j];
_array[j] = temp;
}

return _array;
}

underscore 中采用从前往后遍历元素的方式,实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
// Shuffle a collection, using the modern version of the
// [Fisher-Yates shuffle](http://en.wikipedia.org/wiki/Fisher–Yates_shuffle).
_.shuffle = function(obj) {
var set = isArrayLike(obj) ? obj : _.values(obj);
var length = set.length;
var shuffled = Array(length);
for (var index = 0, rand; index < length; index++) {
rand = _.random(0, index);
if (rand !== index) shuffled[index] = shuffled[rand];
shuffled[rand] = set[index];
}
return shuffled;
};

将其解耦分离出来,如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
function shuffle(a) {
var length = a.length;
var shuffled = Array(length);

for (var index = 0, rand; index < length; index++) {
rand = ~~(Math.random() * (index + 1));
if (rand !== index)
shuffled[index] = shuffled[rand];
shuffled[rand] = a[index];
}

return shuffled;
}

跟前面一样,做了下数据图表,猛戳 http://hanzichi.github.io/test-case/shuffle/Fisher-Yates/

关于证明,引用自月影老师的文章

随机性的数学归纳法证明

对 n 个数进行随机:

  1. 首先我们考虑 n = 2 的情况,根据算法,显然有 1/2 的概率两个数交换,有 1/2 的概率两个数不交换,因此对 n = 2 的情况,元素出现在每个位置的概率都是 1/2,满足随机性要求。
  2. 假设有 i 个数, i >= 2 时,算法随机性符合要求,即每个数出现在 i 个位置上每个位置的概率都是 1/i。
  3. 对于 i + 1 个数,按照我们的算法,在第一次循环时,每个数都有 1/(i+1) 的概率被交换到最末尾,所以每个元素出现在最末一位的概率都是 1/(i+1) 。而每个数也都有 i/(i+1) 的概率不被交换到最末尾,如果不被交换,从第二次循环开始还原成 i 个数随机,根据 2. 的假设,它们出现在 i 个位置的概率是 1/i。因此每个数出现在前 i 位任意一位的概率是 (i/(i+1)) * (1/i) = 1/(i+1),也是 1/(i+1)。
  4. 综合 1. 2. 3. 得出,对于任意 n >= 2,经过这个算法,每个元素出现在 n 个位置任意一个位置的概率都是 1/n。

小结

关于数组乱序,如果面试中被问到,能说出 “Fisher–Yates Shuffle”,并且能基本说出原理(你也看到了,其实代码非常的简单),那么基本应该没有问题了;如果能更进一步,将其证明呈上(甚至一些面试官都可能一时证明不了),那么就牛逼了。千万不能只会用 Math.random() 投机取巧!

来源: https://segmentfault.com/a/1190000005875191

Read More:

坚持技术分享,您的支持将鼓励我继续创作!